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ABSTRACT

The generation of surface waves in a fluid caused by a
partially submerged body is modeled mathematically as a boundary
value problem for the Laplacian with Neumann data on the bottom
of the fluid container and on the body, a linearized free sur-
face condition and a radiation condition at infinity. Fritz
John (Comm. Pure Appl. Math., Il, 1950) showed that the problem

had a unique solution only under rather restrictive assumptions
on the body geometry and reformulated the problem as an integral
equation which was not uniquely solvable at certain irregular
frequencies. In the present work, uniqueness is established for
more general geometries, allowing corners and nonnormal inter-
sections of the body with the free surface. Also presented are
two methods of modifying the integral equation so that it is
uniquely solvable for all frequencies. One method involves
introducing an additional integral on the waterplane, while in

the second method, an additional integral term is added to the
equation which remains an equation only over the submerged por-
tion of the body.
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This program is jointly supported by the Office of Naval Research under Program Ele-

ment 61153N, Task Area RR0140302, and by the Independent Research Program at DTNSRDC

under Program Element 61152N, Task Area ZR0230101, using Work Units 1552-018 and

1843-015. The research was performed at DTNSRDC by the author during sabbatical

leave from the University of Delaware under the Intergovermental Personnel Act of

1970.

INTRODUCTION

It has been thirty years since Fritz John published a pair of papers with a

similar title1 .,2 which still underlie present thinking. In Reference 2, which must

be regarded as a tour de force of classical applied mathematics, John analyzed simple

harmonic motion of the fluid in which an impenetrable body is partially i mersed.

He formulated the problem mathematically as a boundary value problem for Laplace's

equation with appropriate boundary conditions on the body, the free surface, the

bottom of the fluid container, and the radiation condition. Under certain restric-

tions on the body shape, he proved the existence of a unique solution and formulated

*A complete listing of references is given on page 57.
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an integral equation for the velocity potential evaluated on the body surface. This

equation is not uniquely solvable at a set of irregular frequencies as John pointed

out and this has plagued researchers in this area ever since.

John based his work on classical potential theory even though the physical

domain had a corner at the intersection of the body and the free surface. Thus, he

looked for classical solutions, continuously differentiable up to and including the

boundary, although he did not show that the solution, the existence of which he

proved, actually satisfied this property. This is not surprising in the light of

subsequent work 3 which shows, in fact, that such smooth solutions do not exist. How-

ever, by employing the fundamental work on potential theory for irregular domains,
4 i 15 6

developed by Burago et al., Kral, and Wendland, it is possible to formulate the

problem in a more appropriate mathematical setting and to show the existence of a

unique solution under less restrictive assumptions on the obstacle shape. This is

done in the present report where uniqueness and existence are established for piece-

wise smooth bodies. If we permit the wave number to have a nonzero imaginary part,

no further restrictions are required, whereas we do restrict the bodies to those

whose projection onto the free surface coincides with the waterplane area if the wave

number has real values. In either case, we relax the conditions John imposed and

permit nonnormal intersections of the body with the free surface as well as bodies

with corners.

We also present two methods of resolving the problem of irregular frequencies.

One is essentially a simplified version of the method proposed by Chang and Pien7 in

which the obstacle surface is augmented by the waterplane to obtain an integral equa-

tion on a closed surface soluble at all frequencies. The second method is modeled

after a treatment of exterior problems for the Helmholtz equation where similar prob-

lems occur; Burton and Miller,
8 Kleinman and Roach,

9 and Angell and Kleinman.
10

Here the integral operator is augmented rather than its domain and range which

remain the submerged portion of the body. An alternate method for removing the ir-

regular frequencies has been given by Ursell,11 using a modified Green's function as

proposed by Jones, to handle a similar problem in acoustic scattering.

NOTATION AND FORMULATION

As illustrated in Figures 1 and 2, the geometry of our problem is described in

the following manner. Let D be a connected bounded open set in three-dimensional
3

space, E~,whose boundary consists of C w a closed bounded connected region In the

F 2
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Figuire 1 -Floating Body -Three-Dimensional View
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x-z plane and Co , a piecewise smooth surface in the lower half space, y < 0, in the
following sense. The boundary D C is to be piecewise Liapunov, that is, com-

posed of a finite number of segments each of which lies on a Liapunov surface (on

which there is a HWlder continuous normal); see, e.g., GCnter1 3 for a precise defini-

tion of Liapunov surfaces. Moreover, 3D_ satisfies a two-sided cone condition; i.e.,

there exist a, h > 0, such that each point of DD_ may be taken as the vertex of two

cones of height h and vertex angle a, one lying entirely in D_ and one in the com-

plement of the closure of D_. A rectangular coordinate system is oriented with the

origin in C and D lying below the y = 0 plane. Let Cf, the free surface, be the

closure of the complement of C in the y = 0 plane, and let CB be the plane y - -h.

Denote by D+ the unbounded domain bounded by Cf, Co, and C3. Also let Z be the re-

flection of C in the x-z plane and D be the reflection of D . Unless otherwise
0

noted, the normal n^ points into D+ from C0 , Cf, C3, and into _ from Cw. We denote

points (vectors) by p = (xp,ypzp) and q - (xq,yq,zq) with cylindrical coordinates

p - (pppyp ) and the subscripts will be omitted if there is no danger of confusion.

We formulate the floating body problem as follows:

Find a function

$(p) E C2 (D+)n(C( 1)+U 3 +) (la)

where Cm (2) is the space of functions with m continuous derivatives on Q, such that,

S2 -0 pE D+ (lb)

! I~~~ + kOl = -,+ kop f()
Y P Cf (10)

ao--o-0 pE C (14)

p EC (1.)
in

:, -- V~p p : co (l4

...



where V(p) is integrable on Co,

- iko -o p 12

where k° is the root with largest real part of the equation

k sinh kh k cosh kh (2)

Some properties of k. are listed in Appendix A; here we only remark that there always
n

is such a k with a real part that is strictly positive.
0

Finally we add a condition on 3 /3n which will enable us to employ Green's
0*

theorem, namely, that 3 /Dn defines a distribution in C (aD+) (the space of func-
tions of bounded variation) in the sense of boundary flow (see Burago, Haz'ja and
Sapoznikhova,4 Wendland,6 and Kleinman and Wendland 14 for a more detailed discussion

of this concept). Roughly this means that

- a,
Ial j u do
a ma+ f

aDm

a bounded lnear unctonal on (+) (continuous functions on 3D ) where

u C C 03D ) (infinitely differentiable functions with compact support in R 3 ) and

3 is a family of smooth surfaces in D+ converging to aD+. We note that, if (a /an)

C L1  (aD+), it will have boundary flow. Alternatively, we could require thatl o c If 
j ~ 2 j ~ 2 d

#(P) E IoC (D+), that is, Q {l$12+IV*1i)dr < for every bounded subdomain nCD+.

This would also enable us to employ Green's theorem. Kleinman and Wndland1 4 have

shown that, if # has boundary flow, then it is in H oc(V+). The given data V will
be interpreted as defining a boundary flow which it will do if, for example, V c

LI(C 0 ). Here, L101) is the space of (Lebesgue) integrable functions on no f ( ) is
the space of functions which, together with their first derivatives, are In L (n);

and Lo (0) is the space of functions Integrable over every bounded subdomain of fA.10c

5
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UNIQURWNS

The first important property we establish concerns conditions under which the

problem, Equations (la)-(lf), has a unique solution. We remark that John proved

uniqueness by requiring that C0 was smooth (C 2 ) and that rays perpendicular from CB

intersect C at most once. In fact, he requires C (or CoU C) to be convex. Here

we will establish two versions of the uniqueness proof. In one we require the waves

to be dispersive, that is, Im k > 0, in which case uniqueness is established for the

piecewise smooth boundaries described earlier. The second deals with nondispersive

waves, Im k - 0, and requires an additional assumption that vertical rays from Cf

(not CB as in John's proof) do not contain points in D . In either case, we make no

convexity requirements and permit nonnormal intersections of C and Cf. We note that

the 'assumption of a small imaginary part for k has ample precedent (e.g., Lighthill
1 5

and Noblesse.16 Also, it should be noted that Lenoir and Martin1 7 have presented a

uniqueness proof for real k in the case of infinite depth which requires no geometric

restrictions. Their method, however, does not appear to be immediately extendable

to finite depth. In fact, Ursell1 8 has shown that their proof is incorrect.

Uniqueness Theorem:

If C is piecewise smooth and Im k '- 0, the homogeneous floating body problem
0

has only the trival solution; that is, if

V 2  0. pcD+ 0, p C

k- 0.O p C D+ 9-' Ao 3

* *~a iko, O
f-k T°' peCf P1- 172

3" o, p C C B C c2 (D+) n c° (D+ u D+)

and 30/9n exists as a boundary flow even though it is not defined at corners, then

E 0. The theorem remains true if In k - 0, and vertical rays from Cf do not

intersect D.

6



Proof:

Assume satisfies Equation (3). Since * is continuous in C0 (D+U3 D+) and has

a normal derivative in the sense of boundary flow, we may still apply the divergence

theorem (Burago and Maz'ja)19 to V - $70 in D+U DR, where D R  {pjp<R) is a

cylinder of radius R; and I denotes the complex conjugate, thus obtaining

f *V2 I 4v2 }d" a- -1 30 do (4)

D-j)D C C C 3+. f Uou BU R

where An points into D+. Because 0 satisfies Laplace's equation, the integral on the

left vanishes and the boundary conditions cause the integrals over C0 and CB to

vanish as well. Employing the boundary condition on Cf and the fact that on 3DRD

a/an - -/ap, we obtain

osI 
.

J ('-k) (0 2 do+ f dso 0 (5)

Cf 3DR; cf R

The radiation condition implies that on 8DR

12Ii~ k9 + Q0 - ikoI ('s + (6)

191 .O12 +$ Im ko( + 8 iRek (6

- o(T). o()

hence,

' + .i k 2k' + + o (7)0Fp Tp )k -VP



Substituting in Equation (5) we obtain

r ik 'd k~ 2 I a ol
f i R I 0I -C f 3D Ras R- (8)

or

2 Im k f l2 ds + U {1]1 o + I ds -o(l)
f R f0 n T )C f oD R as R (9)

From property 4 in Appendix A we know that if k 0 0, then Rek > 0. Equation (9)

may be written as

2 Im k I 0I2 ds + f (Rek 2 112 + (Im k R + Re ) 2
Cf 

R 3DR

+ (Im koI,+Ia W - ds - o(1) (10)

Since Im k > 0, then all the terms on the left are nonnegative, and it follows that

individually they vanish as R - -. Thus,

J~' 1012 ds" o(1)=0"lo(-4-) (11)

aDR

which, together with the remaining relations, ensures that

0 (1 (12)

and

6
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r .

Ink f 1,12 da - o(1) (13)

Cf

But the last expression is independent of R, hence

Im k f 101J2 do = 0 (14)

Cf

Equations (11) and (12) imply that 4/3n - 0 on 3DR as R - w, hence we may apply

the divergence theorem to fV# in D+ , obtaining

f '-0 dC -f IV012 dx (15)

which, with the boundary conditions, reduces to

kJ f 02 da f!+ IV,12 dT (16)

C fD+f+

If In k > 0, then Equation (14) implies that f 1,12 ds - 0 and, therefore,

Cf

J IV12 dT - o

Thus 4 must be constant and, by Equation (14), the constant uuat be zero and the

theorem is proven. If In k - 0, Equation (14) gives no information and Equation

(16), although still valid does not imply that 0 - 0 since k has the "wrog sign.



To prove uniqueness, when In k - 0 we follow John's argmnt and impose the

additional restriction that every vertical ray from the free surface contains no

points of D_; that is, if (x,O,z) E Cf then (x,y,z) D_, for -h < y . 0. This re-

striction means that the projection of D_ on the y - 0 plane is Cw, the waterplane,

as illustrated in Figure 3a. We introduce additional

Cu C, CW Cf

Figure 3a - Permissible Configuration Figure 3b - Impermissible Configuration

Figure 3 - Restricted Geometry for Im k - 0

notation setting D1 to be that portion of D+ that may be reached by vertical rays

from Cf and, following John, we have the representation

Sf an (x, s) cosh kn (y+h) for p c D1  (17)

n-.0

where kn are the roots of Equation (2) with nonnegative Imaginary part. Using Equa-

tions (17) and (2) we may show, by elementary integration, that

(x,yz) co h k y+h) dy a (XZ) 2k h . (18)

-h

With the Schwarz inequality we find

10



so(+snh 2k h) 2 ~0  0,247 oh kyh y(9
h #1 -h -h e2

t 6erefore, there in a constant C (n 2i 4  )such that
0ih2

0

0

1%(xz)1 2 4 cf- 1,12 dy (20)
-1h

Integrating Equat ion (20) around a circle of radius R we have

f R1%1~2 de <C f 1,12 ds (21)

and letting R ~ using Equation (11), it follows that

27r
HIM RIa%12 de - 0o22

0

Since

a0- Rflj (k p) sine (23)

where H lare Hankel funactions,

4,

WONG-,4;-



2W,, 12 d ,in.2W RL B, II (koR)e de

Af n  In 0 o'Lvr.n (50

-oo

fromn which we infer that

m 0 for' very m (25)

hence,

a mh
0

and

005,z cosh k(y+h) dy 
0 0 

(26)

-- hintegration by parts leads to

0

*(x,O,z) sinh ko h o5 2 sinh k 2 0 (y+h) dy (27)

-h

* hence,

1*dxo,:) sinh koh 1 2 <5 I 2 dyj f Sinh2 k0 (y~h) dy (28)

-h -

12
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Since, from Equation (2),

sr k s h k h * oh h
uihk(y~) dy -2, 2 k()h

we have, with Equation (28),

0 0
2k #*(x.O,X)1I2  I*y 12- y Iv12 dy 30

-h -h

Integrating over Cf we obtain

2kf ,12 do.<J VI 2 dT (31)

Cf D1

and, with Equation (16),

2f' IV,12 dr j5 IV,12 dr (32)
rD D

or

5'+ ,2 dT +J IV2 dT (33)

D+\D

from which we infer, since both terms on the left are nonnegative, that Vf - 0 in D,

bence* - constant. But, then 3/an a 0 aud the free outface Qi&to% tplies that

- 0 coupletIRg the proof. We note that the proof would be essentially uacbaaged

if, Instead of 24/3n - 0, we had - 0 on C0.

13
.1



lITERAL EQUATIN OMLATIOU

Again ye follow John and introduce the Green's function for the limiting case

when D_ is empty and C f is the entire y -0 plane. Thus, define

y(p~q) n iE 0 n coshk (y p+h) coshk n(y +h)
hk2 -hk2+k paqn-0 n

(34)

- 41) cash Pi(Y< + h) )i cash py> + k sinh ivy>
Wr 0.P sinh ph - k cash pih
0

where y> - max {yp,y) < 0 and y< -min {y ,y} 1>-h;

Here k nare the roots of Equation (2) with nonnegative real and imaginary parts,

and the contour passes below the zeros, v' - k n , of the denominator. It to not diffi-
cult to see that y satisfies the radiation condition and boundary conditions,

0,~m y -h and .Xky 0. y 0 (36)

* John has also shown that the singular behavior of y is given by

1 ___ + li(p,q) (37)

2rlp-ql 2irlp-'j 2rjp-qlj

where H -O(tnlp--'I) O(Jnlp-qll)

-(xq'*-Yq*Zq)

q,- (x q -y q-2hzq)

14



We now state Green's theorem for solutions for the floating body problem using the

Green's function defined in Equation (34).

If

V = o, peD+

- 0, y - -h

- - 0, p C Cf

lmk> 0

and DO/ay exists at least in the sense of boundary flow, then

f (q) nqay,) - y(p,q) dsq a(p) O(p) (38)

oq
0

where fq points into D+ and

2, p c D+ U C'UCB
c(p) :- lm L . ds 1 1, p e smooth points of C (39)

f 3n q 0
[aBc(p)]nD+ q

The fact that a(p) - 2 on Cf and CB rather than 1 is a consequence of the form of y,

Equation (37). Here B,(p) denotes a sphere of radius c with center at p, the normal

points away from B (p) and C' and C' are primed to denote that the boundary points

between Cf and C w are not included. It should be noted that O(p) is defined at non-

smooth as well as smooth points and is a measure of a normalized solid angle, al-

though the explicit evaluation in Equation (39) holds only at smooth points.

We also state a version of Green's theorem for solutions of Laplace's equation

in D : If V2 - 0, p E D and '/an exists at least as an interior boundary flow

(approximating surfaces lie i D), then

15
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a -(pI d(q)q = [2-a(p) (p) (40)

ou q

where fi points away from Dq
Since 3y/ nq = ky on Cw, this may be written

(q) dq - f Y(p,q) d [2 -a(p)] $(p) (41)
Sqq

C0 
C

In particular, if 1 1, we get a form of Gauss' integral

S --y- ds + k y ds= 2 -a(p) (42)
C qC
0 w

It should be kept in mind that both Equations (38) and (42) hold for points p in the
slab -h < yp < 0 since, as yet, we have not defined y outside of this region. With

the boundary condition, Equation (le), and Equation (38), we have the boundary

integral equation

a(p) p) + f (q) da = V(q) y(p,q) ds for p E C (43)j- n q jq o

q C0 0

where a(p) = 1 at all smooth points of CO . Alternatively, we could multiply Equa-

tion (42) by $(p) and add it to Equation (38), and use Equation (le), to obtain

2 *(p) + ['(q)-O(p)] (P ds- k(p)j y(pq) ds
fn q qC qC

o w

" V(q) Y(p,q) do for p e D+U 3 D+ (44)• , q
C
0

16
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This is a form derived by Noblesse 1 6 and is the analog of the formulation for the

Halmholts equation derived by Abner and Kleinman. 2 0  Observe that the representation

does not change form when p is on the boundary of D+ even if p is a corner point.

If we restrict p to lie on Co, both Equations (43) and (44) are integral equations

for the unknown values of on C0 . As John showed, there exist irregular valpes of

k, that is, those values for which

cLP(P) u(p)+ U(q) dods 0 or p c C (45)f q
0

has nontrivial solutions. We note that if u is a solution of Equation (45), it is

also a solution of the homogeneous form of Equation (44). Note also that since a(p)

= 1 almost everywhere on C0 , Equation (45) may also be written

C&(p) u(p) + a(q) u (q) ds 0 for p C C (46)

0

and so, even if C0 is only piecewise smooth, the irregular frequencies are those for

which there exist piecewise continuous nontrivial solutions of

v(p) +1 v(p) 1(P'q) da - 0 for p e C (47)J 3n q 0

where we have replaced a(p)u(p) by v(p). Adopting the notation of Kleinman and

Roach we introduce the boundary integral operators on Co

fv VW P da for p c CO  (48)

f np q

and

17
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qf (q) doq for p e C (49)
C0q

so that Equation (47) may be written

(I-*) v 0 for p c C (50)

In order to proceed we recall' the jump properties of single and double layer
11

potentials: if u is continuous on C (actually L (C0 ) suffices), then

lim f u(q) y(pq) doq -+ u(p) +f u(q) do (51a)

o C C
0 0

lm+ u(q) aX q ds - u(p) u((q) d (52a)
pC- n q n qP''o C 0C0

0 0

where 1 it means that p approaches C from D+. Since C may have corners, Equations

(Sla) and (52a) hold almost everywhere on Co; see Lemma 4, Appendix B). The fact

that y is given by Equation (34) rather than merely being the fundamental solution

Yo - l/(2vjp-qI), does not alter these properties, since y - y is regular in D+9

D_, and C . That C is not closed is of no consequence provided C is piecewise Lia-

punov and satisfies a cone condition. If we further restrict C so that it is made
012

up of segments lying on Liapunov surfaces of Holder index 1 (12 q(p-q)j<AIp-qj2),

then Lema 6, Appendix B assures that if one of the derivatives

2j u(q) dSqor -nL u(q) do
+faqq anpfCn q

'PC0 pC0

It



exists for p C C0 , then the other does also and they are equal. We will henceforth

assume that this slightly stronger smoothness requirement is satisfied, which still

allows for corners and edges.

It will be useful to Iadd the jump conditions for layers defined on Cw * If U is

continuous on C w (again L1 (C ) would suffice), than, since q'u q (see Equation (3))

the singularity at q is doubled in strength and

y(p~q) -- + O(Lnjp-q()
in p-ql

hence

VC P C C q
w w

u~ y (p S)' d 2u(p) + uq 1p.)d 5b
Ur J u~) an dq a) nq dq(5b

V+CW C q q
V V

where p approaches C wfrom D-, since we have not, as yet, defined y(p,q) outside the

slah-h <y p(yq)<O0. The normalan C w is taken to pointIn the positive y

direction.

Another way to arrive at boundary Integral equations for the floating body

problem is to assume that a solution Is given In the form of a single layer with un-

known continuous density on C0 .

4(p) :u f u(q) y(p,q) do q for p C D+ (53

C
0
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Then, with Lemna 1 in Appendix B we see that is continuous to the boundary (we may

define u - 0 on DD+\Co). Also, * satisfies: Laplace's equation, Equation (lb); the

free surface condition, Equation (1c); the boundary condition on C1, Equation (1d);

and the radiation condition, Equation (if). Moreover, with Lemma 9 of Appendix B we

can show that H E H1  (D+). Finally, to satisfy the boundary condition on C we

take the normal derivative, use the jump relation, Equation (51a), and arrive at the

integral equation

u(p) +(u(q) doq = V(p) for p a.e. on C0 (54)

C O
0

or, with Equation (48),

(I+K)u iV for p e C0  (55)

9
Following Kleinman and Roach, we call those values of k for which (I+K)u - 0 has

nontrivial continuous solutions irregular or characteristic values of -K and values

of k for which (I+K*)u - 0 has nontrivial solutions, we call irregular or character-

istic values of (-K*). Actually, Kleinman and Roach
9 (see also Angell and Kleinman

10

for clarification) treated solutions in L 2(Co) for smooth closed C0 in which case it
is known that solutions of (I+K)u - 0, which lie in L2(Co ) , also are continuous.

In the present case we will consider continuous or piecewise continuous solu-

tions in order that normal derivatives of double layer distributions satisfy Lemma 6

(Appendix B). If K is compact, then these irregular values are the same. However,

K is not compact in the space of continuous functions on C0 if the surface is not

smooth. Nevertheless, some of the features of compact operators are retained. To

see this we first define the adjoint floating body problem as the following interior
2 1problem: Find $ c C (D) with interior boundary flow or in H (D_) such that

V 2 T- 0 for p C D (56)

0forp cw (57)
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" f for p cC 0  (58)

where f is a given function.

Further, those values of k for which a nontrivial exists, such that Equations

(56)-(58) hold with f - 0, will be called eigenvalues of the adjoint floating body

problem.

We now prove:

Theorem 1 - The elgenvalues of the adjoint floating body problem are real.

Proof - Assume u is an eigenfunction. Then Green's theorem implies

u - ) d(0 59)

ou~w

and, applying the boundary conditions, we get

I (i-k)u] 2 do - -21 Im k jul 2 ds = 0 (60)

C Cw w

hence, either u = 0 or Im k - 0. However, if u - 0 on Cw, then since u also vanishes

on Co, u is an eigenfunction of the interior Dirichlet problem and it is known that

there are no nontrivial solutions of this problem for the Laplacian. Hence, Im k - 0

rwhich proves the theorem. Next we prove:

Theorem 2: If k is an eigenvalue of the adjoint floating body problem, then k is a

characteristic value of -K.

Proof: Assume k is such an eigenvalue so that there exists a nontrivial function v

defined in D_ which satisfies Equations (56), (57), and (58) with f - . With

Green's theorem, Equation (40), we have

, av-
2vY q ds for p C Dfv ;n v_ q) q-

C quC* oU w

av- (61)

S-f y(p,q) - doq for p £ D_
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where the boundary conditions on Co, as well as the fact that both y and v_ satisfy

the free surface condition on C have been used. Now, taking the normal derivative

and using the jump conditon of Equation (51a) we obtain

av av
2 3- g- don for p c C a.e. (62)

0

or, with Equation (48),

3v

(I+K) --- = - 0 for p E C (63)

Since both v and 3v /n cannot both be zero on C because v is assumed a non-m 0

trivial solution of the Laplacian in D, it follows that k is a characteristic value

of -K. Furthermore, we can also show:

Theorem 3: If Im k > 0 and k is a characteristic value of -K, then k is an eigen-

value of the adjoint floating body problem.

Proof: Assume (I+K) 0 has a nontrivial solution . Then define

v+ :+-f (q) y(p,q) doq f'ir p c D+ (64)

C
- - 0

The jump condition, Equation (51a), then shows that

av+
-(I4K) * 0 (65)

and hence, the Uniqueness Theorem guarantees that v~ 0 for p C D+. Now let

v_ :f Oq) y(p,q) dsq for p C D_ (66)

C
0
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Since the single layer is continuous .cross C (Lemma 1, Appendix B), it follows

that v = 0 on C and, because of the properties of the Green's function, either v
0

is an eigenfunction of the adjoint floating body problem or v - 0 for p. £ D_. The

latter possibility is ruled out since, if v_ - 0 then Bv_/9n- 0 and, with Equations

(51a) and (48), we would have

av-
Tn- - + YA - 0 for p e C0  (67)

With Equation (65) this would imply 0 = 0 contrary to the assumption, thus proving

the theorem. Theorems 2 and 3 establish the equivalence between eigenvalues of the

adjoint floating body problem and characteristic values of -K. We can also obtain

some relations, though not as complete, for characteristic values of -K* as follows.

Theorem 4: If Im k > 0 and k is a characteristic value of -K*, then k is an eigen-

value of the adjoint floating body problem, hence also a characteristic value of
(-K).

Proof: Let 0 be a nontrivial solution of (I+K*) * 0 and p c C . Such a 0 existsO0

since k is assumed to be a characteristic value of -f*.

Define:

v:uy(P'g) ds for p c D

f ~qqCO
0

Then, using the jump condition, Equation (52a), we see that v - (IAK*) 0 - 0.

Hence, because of the properties of y, either v_ is an eigenfunction of the adjoint

interior problem or v = 0. The latter case is ruled out by the following argument.

If v_ - 0 for p E D_, then 3v_/an- - 0 on Co.

Now define

:f (q) for p c D+
Cq~0

and use the continuity of the normal derivative of the double layer (Lea 6.

Appendix B) to deduce that
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--n 0 for p e Co

Then v+ 0 for p C D+ from the Uniqueness Theorem and in particular, from Equation

(52a),

v+ (-I+0*) u=O for p c C0

Since it is also true that (I+K*) 0 - 0, it follows that * = 0, contrary to assump-

tion, thus establishing that k is an eigenvalue of the adjoint floating body problem.

Application of Theorem 2 completes the proof.

UNIQUELY SOLVABLE INTEGRAL EQUATIONS

We saw in the previous section that the integral equation formulation of the

problem led to equations which were not uniquely solvable at irregular frequencies.

Here we present two methods for modifying these equations to regain unique solvabili-

ty. One method involves modifying the domain of the operator, whereas the second

involves modifying the operator on the same domain.

Method 1: This method involves the use of Equation (38) not only on C0 , but in D

as well. In scattering theory this is sometimes called the extended boundary con-
dition method (see, e.g., Kupradze,21 Schenck,22 and Waterman23 and has been used in

slightly different form in the present context by Chang and Pien.7 First we prove:

Theorem 5: If u is continuous and bounded on C0 and

J Y(Pq) s -o 0 for p : DUC (68)

then u = 0 on C0
Proof: Let

._ u 3n dSq for p e DUC
q0C

a '
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~Then,

Tn - 0 for p c DuC

and, using Equation (52a)

u( ds for p a.e. on Cpi*_ - _ f an q ~)+ ~ ) q 0

0 C q (69)

and

- 0 for p a.e. on Can-

Now define

*+ anu(q) 'an daq for p C D+C q
0

With Lemma 6, Appendix B, on the continuity of normal derivatives of the double

layer with continuous density, we have

' +
- M= 0 for p E C

an +

hence, *+ is a solution of the homogeneous floating body problem and by the Unique-

ness Theorem, 0+ 0 for p E D+. Again, with Equation (52a) we have

-u(p) + u(q) qyn dsq = 0 for p C CO a.e. (70)

C
0
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Subtracting Equation (70) from Equation (69) establishes the theorem. This mweas

that

I *(q) do y(p'q) V(q) do for p e DC (71)
f q q q

0 0

has, at most, one solution, but the equation still presents problems since the domain

and the range do not coincide and the range is all of D UCW. However, we can im-

prove things somewhat by applying Equation (38) only on the boundary of D and

establish

Theorem 6: If u is continuous and bounded on C
0

u(p) + u(q) a(P~q) ds 0 for p e C' (72)f n q o

Cq
0

and

u(q) . ds 0 for p C' (73)

an q fC q
C0

then u 0 for p C Co . We use C' and C' to denote the smooth parts of C and C.ou W 0 w 0 w
Proof: Assume u is a solution of Equations (72) and (73). Define

f) M u(q) n doq for p C D (74)

Cq
0

Then, since u is assumed continuous, with Equations (52a), (72), and (73) we see that

_ 0 for p C CouCw . Hence, 0 for p c D_ since there are no eigenfunctions

of the interior Dirichlet problem for Laplace's equation. Then the previous theorem
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shows that u - 0 on C . This theorem shows that even though k may be an irregular
frequency, which means that Equation (72) say have nontrivial solutions, by adding

the additional requirement of Equation (73), then uniqueness is assured at all fre-

quencies. Thus, the inhomogeneous integral equations in the form

*(p) + *f(q) p d V(q) y(p,q) ds for p c C' (75)

fn q q 0C q C
0 0

and

C (q) ay(pq) dq q "f V(q) y(p.q) dsq for p E C' (76)

0 0

have, at most, one continuous bounded solution, #(p) for p E C . We defer a proof
0

of existence of a solution of these equations. These equations still suffer from

the drawback that the unknown function 0 is defined on Co, but the equations must be
satisfied on CoU C w . A more usual equation of the second kind with a kernel whose

domain and range are the same may be obtained through the use of the following.

Theorem 7: If 11(p) is continuous and bounded on C, and

2Z(p)+J W(q) Y(Pq) ds - 0 for p C C (77)
q w

V

then u(p) - 0. Here R points from C in the positive y-direction.q V

Proof: Assume 7 satisfies Equation (77) and let

:-f '(q) ZAdSq for p c D_UCoUD+

Cw q

Then, because of the properties of y, we see that " satisfies Laplace's equation in

the slab, -h < y < 0; the free surface condition, Equation (lc), on Cf; the
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homogeneous Neumann condition, Equation (ld), on C5; the radiation condition, Equa-

tion (if); and, because of Equation (77) and the jump condition, Equation (52b),

= 0 for p C C.

Now apply the divergence theorem to f Vf over D+UCOIJ - using the above re-

lations obtaining lID1 dT So 1
'fr ds k I ds (78)

ff 0iD -  Cf ICf

Now we follow precisely the part of the uniqueness proof following Equation (16),

since f defined above is of the form of Equation (17), and conclude that

-0 for for p c D+UCOUD _

Moreover, since y satisfies the free surface condition on y = 0 we also have

-- (q) y (p,q) ds for p e D (79)

C
w

or

f uq) y(p,q) do - 0 for p C D_ (80)

Now take the normal derivative form D using the jump condition, Equation (51b),

obtaining

-2C(p) +f p(q) ) ds - 0 for p E C (81)

Cw

But with the representation of the Green's function, Equation (34), we see that,

for p and q C Cw (0 yp a Yq a 0)
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2 2
:--i~ n~n~) (1) (k~i stub k h cosh k h (2

q n hkhk2+k 0 (82)

Thus, Equation (81) can be written

-2(P)+( do 0 for p c C' (83)f n q w

which, with Equation (77), implies that i'(p) - 0 for p £ Cv , thus establishing the

theorem. This theorem shows that if Equation (77) holds, then necessarily

Z'(q) ay(p, q) do 0 for p C Co  (84)j n q
f q
w

Now combine Equations (75), (76), (83), and (84) and define

O(p) for pL c 0
O(p) :- (85)

{-i(p) for p c Cw

to obtain simply

0(p) + (q) D(q) 3y(p.g) doq V(q) y(pq) ds (86)

Cou wo for p e C;UCw

(1 for q C C 0
where O(q).

1/2 for q E Cw
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Equation (86) is of the desired form and if it has a uique solution, then the re-

striction of t to C is the solution of Equations (75) and. (76). It remains then0

to verify that Equation (86) has, at most, one solution which is the content of:

Theorem 8: If t is piecewise continuous on CouCw and
0

It() q do 0 for p c CoUCw  (87)
0 f0q q1

then 0 0
oUo

Proof: Assume 0 satisfies Equation (87) and define

v := f O(q) 0o(q) 3(PLq dsq for p c D (88)

Then, using the jump conditions, Equations (52a) and (52b) and Equation (87), we

find that v - 0 for p e D . Hence, v - 0 for p c D since the interior Dirichlet

problem has no eigenfunctions. Thus,

Dv-
-0 for p c C0  (89)

Now define

:-+ J B(q) 0(q) o ds for p c D+ (90)

CoU
w  

q

Since v+ is a double layer with piecewise continuous density, we may invoke Lena 6,

Appendix B, to see that

"-- 0 for p c C (91)-n
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But then is a solution of the homiogeneous floating body problem and the Uniqueness

Theorem then implies that

V+(p) - 0 for p CD+ (92)

Taking limiting values as p -~C we have, with Equation (52a),
0

v -0 for P. D 0 +1 f (q) ~0 (q)a~) ds - 0 (93)
qCoU w for p C

0

and

v+ 0fr p cD=;o-0 0 6q 0 (q) dnq dq -0 (94)

Cou w for p cC

from which we deduce that 0 0- 0 f or p C Co. Using this result in Equation (87) we

have

2 a, O()+ 0 q do q w0for p C Cw (95)

w

But then the unique solvability proven in Theorem 7 implies 0 0(p) -0 for p £ Cw.

Hence, 0 (p) - 0 for p C C ou Cw, thus establishing the theorem.

To sumarize the results of this section: If f(p) is a solution of the floating

body problem Equations (la)-(lf), then on C 0 , O(p) - O(P) for p £ C where 9

satisfies the equation

I(p) +J f 8(q) 0P(q) q do~ q f V(q) y(p,q) d~q (96)

C U C q for p cC~

and this equation has, at most, one solution.
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An alternate form of the equation may be derived when V(p) is the normal dediva-

tive of an interior potential; i.e.,

V(p) an - for p e C (97)

For example, in heaving motion V - -i •, hence $ " y + C. When Equation (97)

holds, we may use the Green's identities, Equations (38) and (40), to write

ay(ppq) - y(pq) . (S(q)4T(q)]f [0 (q)" (q)I q n d q

C
0

= 2 *(p) - a(p) 0(p)44(p)] +f [Y(p. q) a - (q) -- (-9n.] ds (98)
SL q q
Vw

Now define

*t(p) := *(P) + (p) (99)

and use the boundary conditions on C and C to obtain the representation
C f

a(p) "(p) +J ( do-2 O(p) + y(p.q)[T-q -k(q)J doq (100).ap t~p f St~q nq q fa

C C

The representation in Equation (100) is valid for all points in the slab -h < y < 0.

The major advantage of this form lies in the case of heaving motion where we

may cause the integral over the waterplane to vanish by choosing the constant in

" appropriately, namely

k y (101)

I32
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1-7
I Then, Equations (75) and (76) become

(P) + q dq -2 (y- for p' eC (102)
f q

0

(q) d for p CC' (103)

whraB nplc f t apq) dq 2

wherasin lac ofEquation (96) we have,

0 (p) + (q) 41 (q) do 2 Y_(104)
fc q qk
CoU C for p c C~ C'

where

O(P) YO~p for p CC

Method 2: A second method of obtaining an integral equation with, at most, one solu-

tion which does not involve extending the domain of the integral operator is pat-

terned after the method used in acoustic scattering problems by 
Burton and Miller*,

Kleinman and Roach, 9and Angell and Kleinman. 10Again we start with the representa-

tion, Equation (38); evaluate it on C 0; take the normal derivative from D +, using

Equations (51a) and (52a); and obtain the pair of equations

O(P) +1 ( g do I V(q) y(p,q) ds for p c C' (105)-
f qn q f q 0

and

'5-f q f an(q) ay dpqA do V(q) ayd)pq -V(p) (106)

P C q p
0 0for p CC'

0
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Since V is assumed to be in L (C ) then Lemma 5, Appendix B, ensures that the normal

derivative of the right-hand side of Equation (105) exists in L and since 30/9n is

also assumed to exist (30/an is equal to V), then two of the three terms in Equation

(38) have normal derivatives from D+, hence the third term also must have a normal

derivative. In addition, since 0 is assumed continuous, Lemma 6, Appendix B, en-

sures that the normal derivative of the double layer,

(q) (P,q) ds
fUp q

P. C q q
0

exists almost everywhere on C and is the same whether we approach C from D+ or D_.

Hence Equation (106) is obtained even though C may have corners. Denoting this

normal derivative by Dn, i.e.,

D 3y'(p,q) ds (107)

C q
0

we may rewrite Equations (105) and (106) as

(I+K*)O -f V(q) y(pq) dsq for p C (108)
o

C

Dn - KV -V for p C C' (109)
n 0

Alternately, if V(p) is the normal derivative of an interior potential, Equation

(97), then we may differentiate the representation of Equation (100) in the normal

direction, obtaining

f *t(q) 8y(pq) dsq - -2 p+ -- k$pdq (110)

9nj - np a s 10

0 wfopC
fo CC

and the pair of boundary integral equations become
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w

D Ot -2 V(p) f1 an ( an )n n a nq q0

C P
w

As with Equation (100), we remark that this form is convenient in the case of

heaving motion with 4 = y - 1/k in which case the waterplane integrals vanish. It

is the pair of equations, either Equations (108) and (109) or Equations (111) and

(112), which will be shown to be uniquely solvable. First we observe:

Theorem 9: If k is not an eigenvalue of the adjoint floating body problem and 0 is

a piecewise continuous solution (in the closure of Co) of

(I+R*)O V(q) y(pq) ds for p c C' (113)

fq 0
C

0

then

D )K - V for p C C' (114)
no 0

Proof: Let $ satisfy Equation (108). Then define

v :f (q) q ds q V(q) y(p,q) ds for p c D (115)
c qc

0 0

and use the jump condition, Equation (52a), to see that v -0 on C and, in fact,
that either v - 0 for p C D or v is an eigenfunction of the adjoint floating body

problem. But, since k is not an eigenvalue of this problem, v - 0 for p C D_ and

hence has a normal derivative from D . The term

f V(q) y(p,q) dSq

C0
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also has a normal derivative, Equation (51a), hence the normal derivative of the

double layer exists and the theorem follows.

Thus, if k is not an eigenvalue of the adjoint floating body problem it is suf-

ficient to solve Equation (108). A similar argument shows that under the same

assumption on k, it suffices to solve Equation (111).

It remains to show that regardless of the value of k, the pair of Equations

(108) and (109) or Equations (111) and (112) are uniquely solvable. In this section

we concern ourselves only with uniqueness and prove

Theorem 10: If Im k > 0, the 2nl piecewise continuous solution of the pair

(I+K*)¢ - 0 (116)

D n 0 (117)

is =0.

Proof: Assume 4 satisfies Equations (116) and (117) and constru:t the function

v+ :W f 4s(q) qy(P~n dq for p c D+ (118)

Cq
0

Since Equation (117) is satisfied, it follows that

BVn - 0 
for p C°

Hence, v+ - 0 for p C D+, otherwise it would be a nontrivial solution of the homo-

geneous floating body problem. Now take the limit as p approaches C0 from D+ using

the jump condition, Equation (52a), to obtain

lim v+(p) (P) +J (q)3(p ) dSq -0 (119)
PCo q

0

This last equation may be written as
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(-I+7*)- 0 for p E C0 (120)

which, when used with Equation (116) implies that * 0.

As a consequence of this result, it follows that Equations (108) and (109) (or

Equations (111) and (112)) have, at most, one solution. Furthermore, Theorem 9 shows

that when k is not an eigenvalue of the adjoint floating body problem and 0 is a

solution of Equation (108) it is also a solution of Equation (109). Similarly, if

satisfies Equation (111) it also satisfies equation (112).

The question of existence has not yet been settled, however, we conclude this

section with one more uniqueness result which is advantageous from a numerical view-

point in that it involves a single integral equation in contrast to a pair. This is

patterned after a result for the Helmholtz equation by Burton and Miller.8  The idea

is to combine Equations (108) and (109) by multiplying one of the equations by a

suitable constant (or function) n and adding it to the other, thus 'obtaining a

single equation

(I+K*+D)= V(q) y(p,q) ds + T) (KV-V) for p c Co (121)

C
0

Remarkably this equation has, at most, one solution if Im n 0 0. We state this as

Theorem 11: If Im n 0 0, Im k - 0, and 4 is a piecewise continuous solution of

(I+K*+nDn) = 0 for p c C (122)

then 0 - 0.

Proof: Assume * satisfies Equation (122) and define

v f (q) n dsq for p c D (123)

0

With the Jump condition, Equation (52a), and Equation (123) we have

37

, ..



v - (I+rt*)O = -r Dn for p C Co (124)

and

av1
an - D (,+K*)o for p c C (125)

Since y satisfies the free surface condition on Cw, v_ will also satisfy this con-

dition. Applying Green's theorem on D we get

0 f " - - v dsJ ( j-n) IDnO ds (126)

foU Cw C0

where Equations (124) and (125) have been used. The integral over C vanishes sinceV

Im k - 0, hence v and v satisfy the same free surface condition on C . Since

S- TI # 0 on Co, Equation (126) implies that

Dn - 0 for p c C (127)

which, with Equation (122), also implies that

(I+K*)0 = 0 for p e C (128)

Now define

v+ :f (q) do q for p C D+ (129)

Cq
0

With Equation (127) and the continuity of the normal derivative of the double layer

we find

av+3-+ 0 
(130)

an n
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Thus, v+ - 0 for p C D+ otherwise it would violate the Uniqueness Theorem. Taking

the limit as p approaches C0 from D+, and using Equation (52a), we find

v+- K o (131)
p+C0

0

Equations (128) and (131) then imply that 4 - 0 as required and the proof is

complete.

In summary, if 4(p) is a solution of the floating body proble, Equations (1a)-

(if) then, on Co, 0 (p) satisfies the equation

O(P) + D(q) ) df 4(q) By(pg) ds

() a oq + n T j an qf q PC q

0 0

f V(q) [y(p,q)+n .7(Pq) ds - nV(q) (132)

C
0

and this equation has, at most, one solution if Im n 0 0.

Alternately, if V(p) - -a4/an for p c C where T is a solution of Laplace's

equation in D_, and 4t (p) - O(p) + 4(p), then 4t satisfies the equation

4) (p ) + t(q) ds + n ( q) d

f q PC q

O 0

2 )+f4 [(p,q) n aP I -n q /k )dsq - 2,nV(p) (133)

C
w for p c C

and this equation has, at most, one solution. In the case of heaving motion, when

V(p) -n - -a • 9, this becomes
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(p) + f 3t q) deq f( (a f) d(q -2(y- +2n n
C q PC q

0 0 (134)

Having established the uniqueness results our task is not complete until we

show that the integral Equations (96) or (132) actually do have a solution, however,

this existence proof is not included here.

This research was carried out while the author was a visitor at DTNSRDC. The
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S. Chang, and Choung M. Lee which contributed greatly to the author's understanding.
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APPENDIX A
A TRANSCENDENTAL EQUATION

We list here some properties of the roots of the equation defining the wave

* frequencies

kn sinh k h - k cosh k h (A.1)n n

Property 1: If k is a root, then -k n is a root.

Property 2: If Im k = 0 and Re k # 0, then there exist exactly two distinct real
roots and an infinite number of purely imaginary roots. This was observed by Fritz

John.

Property 3: If Im k 0 0, then Re kn 0 0. This may be seen by assuming that the

statement is not true i.e., Re kn - 0 or that kn - ixn, in which case, Equation (A.1)

becomes

-x sin xh - k cos x h (A.2)

Since the left-hand side is real and Im k # 0, we find cos x h 0 in which

case, from Equation (A.2), x sin xh - 0 and these two equations cannot be true

simultaneously.

Properties 1 through 3, considered together, establish

Property 4: If k 0 0, there exists at least one root of Equation (A.1) with a

positive real part.

Property 5: If k is bounded, then Re k is bounded. This may be seen as follows.

Assume k is a root of Equation (A.1), such that kn1>2l. Then, solving Equationn suk tha 1kn2 .TesligEutokh
(A.1) for e we see that

2k h k +k -2k h k -kn n n ne v-k -' and e k +k (A.3)
ni n

from which it follows that
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2hRe 3 U k <_ k (A. 4)
-Ik n 1-kl

Since the right-hand side is monotonically decreasing in Ik nI for Ik_ n>. 21kj we have

2h Re < 21kl+lkI 3 (A.5)

21ki1ki

or

Recalling that this was found under the assumption that 1k_ n>. 21kj we see that

either Equation (A.6) holds or

(kI< 21ki

which implies

IRek nl < 21kj

thus,

which establishes Property 5. Not only is Rek n bounded, but, as can be seen from~

Equation (A.4),

Property 6: lkim Ren 0

This helps establish
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Property 7: There exists a root of Equation (A.1) with largest positive real part.

We designate the root as k 00
This follows since any bounded sequence of roots is either finite, hence has a

member with largest real part, or converges to a bounded root and again there is one

with largest real part. The bound may be chosen, with Property 6, so that the roots

with magnitude larger than the bound have real parts smaller than Rek . Finally we
0

add

Property 8: If Rekn > 0 and Im k > 0, then Imk n > 0. This can be seen by letting

kn  xn + iyn with xn > 0 and rewriting Equation (A.1) an

sinh kn h xn sinh 2xn h-yn sin 2y, h+i(yn sinh 2x nh+xn sin 2y nh)
k k cosh kn h 2lcosh (xn+iyn)hj"2  (A.8)

But, Im k> 0 implies that Yn sinh 2xn h + xn sin 2yn h> 0. Recall that xn > 0

and assume that yn < 0. Dividing by 2h x yn yields

sinh 2x h sin 2y h
n + n

2xn h 2y n h --

hence,

sinh 2x h sin 2yn h Isin 2y h2nh < n <I ny
2x h - 2yn  h -- <nI

which is impossible with xn 0 0. Hence, yn > 0 establishing the desired result.
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APPENDIX B

SOME PROPERTIES OF SINGLE AND DOUBLE LAYER POTENTIALS ON

NONS1400TH BOUNDARIES

n

If C is a simply connected piecewise Liapunov surface, that is, C -U C
i1

13U a Ci. where each C lies on a Liapunov surface a i (e.g., Glinter ), then many of

the familiar properties of single and double layer potentials on smooth boundaries

are still valid as shown by Wendland. 6  We list some of these useful properties here

with some indication of how they are obtained. First we define the symbols:

S~ 0:P f i'(q) Y 0(p,q) dS q for p c IZ (B.1)

C

D~j P.n f ~) op)d for p~ c R 3(B.2)
0 5n q

Ko vi:.f p (q) 3npq ds q(B.3)
C for p cCi. for some i

where

Yo (p,q) :--(B.4)

0 2njp-q1

We understand C to denote an open set on C so that corner and edge points are not

included in Ci9but are confined to 3C,. Note that

Dop KOPfor p C C

where

* Iq 9yo(p,q).
oil Jn diaq q for p C C (B.5)
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While p is defined only on C, we extend by 0 onto a,, that is, define

Vi(p) = i(p) for p £ CiuaCi

(B.6)

:- 0 for p a i \(C iU Ci)

Also, if at is the Holder index of the surface a1 , let a - min {xi) so that a my
serve as a comon index for all a,.

Lemma I: JA L (C) SOP E c' (o' ) Sop e LP(C) for p > 1.
10Proof: Angell and Klenan show that the result holds if C is Liapunov with index

a. But,

n n

Sop p(q) y0 (p,q) dq -i(q) y(p,.q) dq

i-i i- 1

(B.7)

11" Sot Il

where

S o i - Pi(q) y0 (p,q) dsq (B.8)
a1

But

p c L (C) =0' i C L (0i)

hence

S i C °'a  )
oi 1

for each I as does a finite linear combination, thus establishing the result.
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Lem& 2: V c L (C) K* , L(C) for p > 1.

Proof: As before, we rewrite the operator as a sum of operators

, n

'Ao r f- (q) do((PBq).OvP n dq(.9

~ qi t=i1 Ci
ii

Now, for any p C 
3

'"~~q < If '(-q)

f iq an q 2q r L (C) Ip-q1 3  d (B.10)
C i 

I

Rewrite the integral on the right as

I n (p-q) d Inq (p-q) I d +CN (P- 0) If dSq = ds +Id
f p-q 13 q(p) jp-q 13 q f p-qI 3 dq (B-11)

Ci CinB t(Cin~S ( p ) )

where B6(p) is a ball of radius 6 with the center at p, and we choose 6 to be less

than half the Liapunov radius of the Liapunov surface ai of which Ci is a part.j S i n c e jp- q1 > ( B.1 2 )

for q O C i(Cno B6 (p))

I fig (P-q) I d ds q(Ci)

f l~~p-q 13  q < -pq'-6
Ci\(CinBa(P) )  p i\(CinBS6(P)) Ip-q12 - <.

awhere M(Ci) is the surface area of Ci . To evaluate the first integral on the right
of Equation (B. 11) we consider two cases. If p c C i C a,% there exist constants A

and a such that
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<q(P-q) A Ip-q 1  (B.14)

hence

< q q < 2 do < A 6 ( - d<
f I B( ip-q 13 dq_ f f f 2..--__

Cin 6 (P) 0 p (B.15)

for some A' where we used the standard method of projection onto the plane tangent

to Ci at p. Here A' is independent of p and 6. If p f Ci then, denoting by 'F the

normal projection of p onto oi, we have

I fi q" (P-q) ] I n q" .(P- +q) J

ds ds
f Jp-q 3  q fp_ql 3  q
C inB S(P) C inB 6 (P)

f ds f I"
CioB6 (p) cp1q C B6 (P) lp.q3

,(B.16)

Note that Ip-1 < 6 even if C and that B (p) C B26 (p). Using this fact and

Equation (B.14) which holds with " replacing p,

q (p-q)i f + f

f 13( do-p-<- d13s + A fP)p-13 dsq (B.17)

Ip-q ipq -
Ci n (P) B26(p) -q i-- B 2,6-1

Now we use the inequality (e.g., GuInter 
1 3)

1 < 2 (B.1.)

Ip-ql - (Ip-1j2+1-qI 
2)1 2

to show that
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Ii j;'-q 11- 81 i"-q 1 8~c
< 8(B.19)jp q(3  - 12)[3(14)]/2 ([I pI2+I _ql2)(l+c) I (1+0)9)

Employing Equations (B.18) and (B.19) in Equation (B.17), we obtain

ds < 21[p-

Jii (Ftq)j ds

Ip-q1 q-P-CinB6 (P) C B -
in6i n B26 p IP +[_[2 /

C ds
+ 8A qf 3-q 2-.(

CinB2 6 (P)

26 2Tr 26 21T

< 2p- l dpf d P2 + 8A dp df
IlF2p2 1-at

fo 0 o 0

26

< - 4n I + 16_..A6A (26)ot (B.20)(I P -4 12+p2) 12 p =0 O

from which we infer that there are constant Ai and Bi independent of p and 6 such

that

J d A + <A (B.21)
fjp-qf 1 q < i i

Ci B6 (p)

Although Equation (B.21) was derived assuming that p Ci, we see, with Equation

(B.15), that Equation (B.21) remains valid even if p c Ci. Employing the estimates

of Equations (B.13) and (B.21) in Equation (B.1O), we have
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< h ull [ +4A 4+B 6 B.djq (q) ay L (pqd (B. 22)

q L (C 2

Setting

M 2.. a ( +Ai+Bi 6 (B.23)

we have finally, from Equation (B.9), that

1K*P < f pi(q) aY°( < nM 1l1 (B.24)

0Kl~ _< 3n dq <_n

Ci q L (C)

Thus, )j c L (C) * K0  is bounded, hence, K 0 p c Lp (C) for p > 1, which concludes the

proof of Lemma 2. By Fubini's Theorem we then obtain

Lemma 3:* p e LP(C) KoU c L (C) for p > 1.

Next we have

Lemma 4: If p c L (C), then

lim--n So = 1 + p(p) + K 0 for p a.e. on C
F+d+  P (B.25)

and

lir Dol l +P p(p) + KoP for p a.e. on C

PIC+  (B.26)

24
*We remark that Ki.1 need not be bounded (e.g., Fichera and Sneider-Ludovici,

Leis,2 5 and Craggs, Mangler and Zamir 26).
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Here the + denotes limits from either side of C. We choose + to denote the portion

of p3 into which the normal from C points, call it D+; then D- R \u3+ C

Proof: Since the results are to hold almost everywhere, corner and ede. points of

C may be excluded and if p is a smooth point of Ci, then

n

So = clim -Jl f p (q) y (p, q) dSq

P ~ ~ ~--C + P J J1 C

j(q) an ds + lira w(q) yo(p,q) dsqan- C p sq +p M n-T- q'C

J-1 C~ p- C i

n1 ay (pq)
S lia if $ (q) yo(p,q) SqJ-1q Cn d -q pC. a

j C (B.27)

where Z' means that the ith term is omitted.
13

Since a is Liapunov, the validity of the jump relations (Gunter
1 ) shows that

Sn opq)lim n So 11 f pI J (q) By0np~q dso + 1.1(p) +. Ii(q) an Yo(P.q) doq

p+C n 0 -i P

= () np dsq -+ii(P) +J N(q) * ;-yo(p,q) d~q

CI  P

Sy0 
-°(Pdq)

f J (q) an dSq T Ui(p) (B.28)

C

A similar decomposition establishes the jump condition for the 
double layer.
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As a consequence of Lemmas 2, 3, and 4, we have A I
Lemma 5: If u E LO(C), then

lin i --L-SoU E L(C) (B.29)

and

1M_ Dli E LP(C) for p > 1 (B.30)

p-*C

This follows immediately since p E L*(C) implies that Lemma 4 holds and also
Lemmas 2 and 3, hence p and Koly are in LP(C) and KOJ E L1(C). Also of interest is
the normal derivative of the double layer for which we may state

Lemma 6: If p C C°(Ci) for every i, ai is Liapunov with index 1, (which means
Inq(p-q)I<Alp-q2 ), and if one of the derivatives 3DoP/an+ or 3D 1/9n- exists at a
point p C C, then the other exists and they are equal.

Proof: We obviously exclude corner and edge points since there is no normal at such
points. If p is an interior point of Ci, then the proof in the smooth case (Gunter
p 297 et eq. 1 3) may be repeated without change since the crucial step involves treat-
ment of a small patch around p which, in this case as in the smooth case, lies on an
appropriately smooth Liapunov surface. The same argment shows that the result holds
for piecewise continuous densities even if the discontinuities occur at smooth

points, provided all points of discontinuity are excluded.
Finally, we list some properties of single and double layers considered as

operators mapping functions defined on C, not to functions on C, but to functions
defined on the interior of C which we denote as D_. From Lena 1 we immediately have
Lemma 7: p c L*(C) - Sop c LP(D) for p > 1.

Also, since Do 0i C(D_) and linm Dp Lc(C)

(Lemmas 2 and 4), for p c L(C), we have
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Lee 8: v e L (C)* DoU LP(D_) for p> 1.

More difficult to establish are properties of derivatives of potentials. However,

we do have

Lemma 9: t E L (C) V Sop C L2(D_)

Proof: For p c D-, we have

VSo _U f IV(q)I 1-p dl < l f doJ (1.31)
c Ipq q L (C) Ip-q12

C

.therefore,

IVSoU1 2 dp - III12 J q d

S(2L(C) D C Ip-q Ipql

< 1 111 1_ _ _ _ P ds do (B.32)

(27w) L(C) C - Ip-qI2 Ip-q 11
2  q

But

dT dt (.33)

S_(p-q12(p-q( B()P12lp+q-ql12
D -d

where d is twice the diameter of D_. Explicitly

D dTp d drf7 dS 20 d '  sine
D pq r d r2+lqtql 2-2p. (ql-q)

11q-q 1 7r 27w 2

dr dO d sin e Lr U(cos Y) +o f Iq'ql In~

(3.34)
(oi.)
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d WT ~27r r2
+ dr de d sin en+1 Pn(cos y)

Iq-q.1  • L 0 (B.34)

where we have employed the generating function for Lengendre polynomials and

Cos Y - (B.35)l p"(ql-q) J

Using the orthgonality of Legendre functions leads to

dT qlq2 _< dr r 2n
f Ip-qI21p-q if dr A '

+ dr 4 r 2Iqq1-
2

27A 2n+l 2n+2-
Jq-q1l n-0

00 I r2n+l lq-qll q-q 12n d

n-0 (2n+1)2 1 )q-q1 2n ni2  r.O ruiq-q}l)

8w I _ 12r (B.36)

-lq-qll -0 (2n+1)2 lq2ql

Substituting this estimate in Equation (B.32) we obtain
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do q d q j
VJ ) t~~a 2 dT < I 1V 12. JJ dqdqD 1.°I 'tp< [IlL(C) C C q-q11

L(C)C

But Lemea I ensures us that the single layer with density 1 is bounded as is its

integral over C, hence

f Vo~] dp - II llll 1(B. 3)

D L(C) L (C)

vhich completes the proof of the Lemma.

It should be noted that no claim is made about the sharpness of the results of
this Appendix. Indeed more complete and precise estimates of the mapping properties

of single and double layers may become available (see, for example, Fabes, Jodeit,

and Riviere27).
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